

PAP-003-1015041

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

October/November - 2018

S-501 : Statistics

(Computational Techniques & R-Langauge) (New Course)

Faculty Code: 003
Subject Code: 1015041

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70 Instructions: (1) All question carry equal marks.

(1) All question carry equal marks.(2) Student can use their own scientific calculator.

- 1 (a) Give the answer of following question:
 4
 1. Interpolation and extrapolation approaches are
 - 2. The finite differences $\left(\Delta_{y_2}^2 \Delta_{y_1}^2\right)$ is called
 - order finite difference.

 The independent variate values in the interpolation are termed as
 - 4. In diagonal difference table, the _____ argument of the series is taken as origin.
 - (b) Write any one:
 - 1. Prove that $\mu^2 = 1 + \frac{1}{4}\delta^2$
 - 2. Prove that $\mu \delta = \frac{1}{2} (\Delta + \nabla)$.
 - (c) Write any one:

1. Prove that $\sqrt{1+\mu^2\delta^2} = 1 + \frac{\delta^2}{2}$

- 2. Prove that $\Delta + \nabla = \frac{\Delta}{\nabla} \frac{\nabla}{\Delta}$
- (d) Write any one
 - 1. Obtain Greagary Newton's Forward Interpolation formula.
 - 2. Compute f(0.005) and f(0.37) from the following data by using appropriate method

		0.10	0.20		0.4
y	1	1.2214	1.4918	1.8221	2.2255

2

3

5

2	 (a) Give the answer of following question: Newton's backward polynomial formula util the leading difference of each col Newton's method of divided differences takes of the spaced arguments. The relation between u of Stirling formula an Bessel's formula is Better formula for interpolating a value which in the middle of the central interval is formula. 							tilizes olumn.	4
								ich lies	
		(b)	1.	ite any one Prove that relation between forward difference and divided deference.					
		(c)	Write 1. 1	If $f(x) = x^3 - 9x^2 + 17x + 6$ compute $f(-1,1, 2, 3)$ ite any one: Using Lagrange's interpolation formula find a polynomial which passes from points $(0,648)$, $(2,704)$, $(3,729)$, $(6,792)$. Compute $f(\theta)$ for $\theta = 15^{\circ}$ by using Stirling formula from the following data					
Γ	θ	1	<u>0</u> °	12°	14°	16°	18°	20°	ľ
+	<i>y</i>		76327			0.286745		0.363970	ļ
L	(d) Write any one : 1. Obtain Gauss Forward Interpolation formula. 2. Obtain Bessel's formula.								5
 3 (a) Give the answer of following question 1. In Trapezoidal rule, f(x) is a 2. In Simpson's ¹/₃ rule is applicable when number of intervals n must be 						the in other	4		
				words, in th In Simpson					_•
		(b)	4. Write 1. S	number of In Weddle's any one State Newt numerical	s rule, $f(x)$ con-cote's $g(x)$) is a poly quadrature	nomial of		
			2.	Evaluate	$\int_{0}^{1} x^{3} dx$ by	Trapezoida	l rule wit	h n = 5.	

(c) Write any one

- 3
- 1. Apply Euler's Maclaurin sum formula to find the sums $1^3 + 2^3 + 3^3 + ... + n^3$
- 2. Use Talyor's series method to solve $\frac{dy}{dx} = x^2 y$ with y(0) = 1 at x = 0.1, 0.2.
- (d) Write any one

- 5
- 1. Obtain Simpson's $\frac{1}{3}$ rule and $\frac{3}{8}$ rule for numerical integration.
- 2. Given the differential equation $\frac{dy}{dx} = 3x + y^2$, with the initial condition y = 1 when x = 0, use Picard's method to obtain y for x = 0.1 correct to three decimal places.
- 4 (a) Give the answer of following question:

4

- 1. If f(a) be negative and f(b) be positive then first approximation to the root in Bisection method is $x_1 =$ _____.
- 2. In method of Regula-Falsi method we choose two points x_0 and x_1 such that $f(x_0)$ and $f(x_1)$ are of ______ sings.
- 3. The method of iteration is particularly useful for finding the real root of an equation given in the form of an series.
- 4. Newton-Rapshon method is useful in case of f'(x).
- (b) Write any one

 $\mathbf{2}$

- 1. Obtain Newton's formula for square root.
- 2. Evaluate $\frac{1}{\sqrt{37}}$ by using Newton's formula.

Correct up to seven decimal. .

	(c)	Write	any one:	3		
			sing Newton-Raphson method, find correct upto ur decimal places. The root lies between 0 and	1		
			equation $x^3 - 6x + 4$			
		2. Fi	nd by the iteration method, the root near 3.8			
			equation $2x - \log_{10} x$. Correct upto four			
			ecimal place.			
	(d)		any one :	5		
			xplain False position method.			
		2. Ex	xplain Bisection method.			
5	(a)	Give the answer of following question:				
		1. If	v = c (2,5), t = c (3,4) then print(v % % t).			
		Ot	utput is			
		2. If	a = c (5.5,6), b = c (3,5) then print(a%/%b).			
		Ot	utput is			
		3. If	v1 = c(3,-4,1), t1 = c(2, 5, 0) then print(v1 & t1).			
		Ot	utput is			
		4. If	a1 = 8, $b1 = 1:12$ print(a1%in%b1). Output			
		is	·			
	(b)	Write a	any one	2		
		1. Ex	xplain relation operators with example in			
		R-	·language.			
		2. Ex	xplain logical operators with example in			
		R-	·language.			
	(c)	Write any one				
		1. Ex	xplain making Data Frame objects and convert			
		it	in Matrix object with example in R-language.			
		2. Ex	xplain create Histogram with example in R-languag	e.		
	(d)	Write any one:				
		1. Ex	xplain making Matrix object and convert it in			
		$\mathrm{D}_{\mathbf{i}}$	ata frame with example.			
		2. Ex	xplain the Student's T-test in R language.			